
Best Practices:
for Testing & Monitoring

…in the Agile world of Continuous Integration & Delivery

Stormcloud Consulting & Advisory:
written by: Walter Sturm

In order to make software more responsive to market conditions, and adapt to the demands of
digital business, software development has been undergoing an evolutionary shift. Over the
past few decades, the process of creating software has been evolving from a series of
sequential phases with longer cycles and monolithic requirements definition to a routinely
iterative process with much shorter cycles and dynamic requirements enabled by close
interaction between business and development teams.

As a result, businesses are realizing higher quality code, which is better aligned to stakeholder
interests, in a fraction of the time, and at lower cost.

Some examples:

a. 10 years into a project to overhaul the FBI’s Case File System, a team of 300+
developers were ultimately unable to deliver a functioning system after spending $600M
using traditional practices. A subsequent effort employing modern methods, completed
the project, meeting all requirements with a team of just 45 developers, and replaced the
outdated system on schedule for half the allocated budget at a total cost of $99M.

b. Prior to modernizing development methods, Hewlett Packard’s Laserjet Division spent

only 5% of their time innovating. After a 3-year transformation, HP’s Software
Development efficiency has improved so much that they now spend 40% of their time
innovating.

c. There are dozens of additional examples where companies such as Bank of America,

Barclays, Labcorp, Spotify, Nordstrom, Sony, Fidelity, Amazon, Etsy, etc… have
dramatically shortened delivery times and increased output by applying more modern
development practices.

This shift is the adoption of Agile techniques to the Software Development Lifecycle and like any
evolutionary process, change is not immediate but occurs over many years and most often in
small steps. With this in mind, we’ve published this paper to help companies assess where they
are along this evolutionary path, and identify industry best practices which are realistic to
implement given their organizational constraints.

The Old World

1. The Traditional/Waterfall Process of software development is a highly structured, top
down process divided into distinct phases where dates define the boundaries of each
phase. A waterfall project begins when detailed requirements are gathered and
documented. With fixed requirements set, hardware, and software design decisions
outline the environment within which the development team will build. Requirements
are then separated into smaller units which are coded and tested. Once all the software
units are tested, the component units are integrated into a system and tested as a
whole. When the development team is satisfied that the project code meets the
documented requirements, business users perform a final acceptance review before
release. Any bugs that are discovered or changes that are requested are addressed as
patches or minor version releases during the maintenance phase. The typical Waterfall
cycle is 6-24 months.

1. Requirement
2. Design
3. Code & Build
4. Testing
5. Deployment
6. Maintenance

The New World

An Agile Project begins with User Stories which describe light weight functional descriptions of
why and how a user will interact with the system. User Stories promote greater interaction

between the user and developer and focus on a limited scope
relative to traditional requirements. Larger projects are
separated into smaller builds. Self-organizing, cross functional
teams are formed comprised of all members necessary to
complete a build as
described in the User
Story. Each Iteration
includes requirements,
build, testing &
implementation with the

cycle repeated for each iteration. Where multiple
iterations are built concurrently, Continuous Integration
is the process of merging all working copies (iterations)
to a shared “Mainline” copy as often as several times
daily. A typical Agile Cycle is <1 day - 3 months.

The Real World
In reality, most companies no longer use pure Waterfall methods. Likewise, most have not fully
adopted Agile ideals but are somewhere along the evolutionary spectrum in between. We
describe the process of selectively choosing component processes along with the frequency of

software release cycles as the degree of
enterprise “Agility” or “Agile Maturity.”
Organizations that employ many Agile
processes and release code every week are
more Agile than companies that have
implemented only one or two processes and
release code every 6 months.

There are a number of reasons why companies are more or less Agile. Some organizations
are pursuing a “Best of Both Worlds” approach by adopting Agile methods where they see
benefits and retaining the elements of Waterfall that better suit their business needs. Other
organizations are committed to fully adopt Agile but recognize that it will take time to reorganize,
retool, and revise their processes.

Like most things in the real world, nothing is best in all cases and while Agile Methodologies
have delivered some amazing results, it follows that some heavy-weight, formal, waterfall
techniques will better suit some businesses.

Consideration: Agile Waterfall

Scope Time to Market is Key Complete Project is Key
Client Availability High Limited
Funding Best with Time & Materials Best with Prix Fix
Team Routine Collaboration Defined Handoffs
Feature Priority Adaptive Static

Some common reasons teams choose to retain some of the structure of Waterfall methods
include:

• Fixed-scope, Fixed-price contracts
• Client or Business Unit do not expect rapid change in scope
• Client or Business Unit enforces a very formal approach on suppliers.
• Client or Business Unit representatives are not routinely available
• Performance-measures based upon delivery date and budget
• Upfront investment is not risky to make …Waterfall = longer time to realize a return
• Mistakes are not recoverable …with Agile mistakes are presumed but quickly corrected
• Work cannot easily be modularized`\```

Conversely, the biggest benefits of a more complete Agile approach will be realized where:

• Time to Market is Critical
• Alignment to Market is Critical (particularly where):

o Close Collaboration with End users is possible/feasible
o Adapting to rapidly changing requirements provides a competitive advantage.
o Higher Quality User Experience provides a competitive advantage via fast

feedback loop
• Value and Definition are not well understood.
• Mistakes are recoverable
• Complex Problems particularly where the solution is unknown
• Work can be modularized particularly when each incremental step has value

Agility

As of a 2013 report, Gartner Research found that the majority of enterprise development shops
were still working on a 6 month or greater SDLC (Software Delivery Life Cycle). Similarly,
according to a 2016 survey, 82% of organizations are functioning at or below a “still maturing”
level as it pertains to modernization of IT processes with Agile methods.

Regardless of where your organization falls relative to the industry, there are a variety of
maturity models which may be useful to help understand where your organization is currently,
as well as which areas you may want focus on next to continue moving forward. Some models
focus on culture and organizational maturity while others focus on best practices. Both types
of models are beneficial since implementing Agile methods typically requires significant change

and for most businesses, both cultural and organizational challenges will need to be addressed
either as a pre-requisite or during the process.

While this paper is focused on Best Practices from a DevOps/QA perspective, a comprehensive
self-evaluation will include the following:

• Organization
• Architecture
• Build Process
• Testing
• Reporting

As you evaluate best practices, if you uncover cross-organizational barriers, we recommend
augmenting the guidance in this paper to also address the organizational aspects of Agile
Transformation. There are several good books, industry papers and case studies which
document real-world lessons learned by organizations that have already undergone the
process.

Classifiction:

Following a common technology adoption curve, we’ve categorized stages of evolution as it
relates to your peers:

• Laggards: Falling Behind
• Majority: Where most companies are today.
• Early Adopters: Moderately Mature Agile

Practices (some differentiation)
• Innovators: Very Mature Agile Practices
• Bleeding Edge: Industry Leading and often

costly to implement

Best Practices for each Stage:
Each stage either builds upon (adds new capability) or evolves from (replaces the less effective
method) capabilities of the prior stage.

Laggards:

Agility Gauge: Organizations in this category develop Monolithic Code which is
integrated at the end of a Build Phase. Report generation is manual.

Testing Typical Practice: Testing occurs at the end of Integration which might be manual
or include scripted tests. Manual Functional and Regression tests are performed in
Staging.

Monitoring Typical Practice: Basic up/down infrastructure (server & network) monitoring
practices are employed.

Majority:

Agility Gauge: Organizations have deployed a standardized Build Process and Dev
Environment with Manual Deployment, which may include Automated Deployment
Scripts. The SDLC is measured and routinely reported on.

Testing Best Practices: The majority of organizations have processes where
Automated Functional & Regression Tests are employed in Staging with Developers
quickly addressing failures. Ad-hoc Capacity Tests are routinely performed with a new
release.

Monitoring Best Practices: Most organizations have one APM (Application Performance
Monitoring) component employed. Commonly this is Application Monitoring (Application
Discovery, Tracing & Diagnostics) solutions or Digital Experience Monitoring (DEM)
which comprises Real User Measurements (RUM) or Proactive (Synthetic) Monitoring
i.e, Automated Scripts checking Availability, API Function, etc…

Early Adopters:

Agility Gauge: Continuous Build & Integration at scheduled times with Dependency
Management Repository along with Push Button Deployment to Test Environment and
Production including Disaster Recovery. Build Server reports about code changes,
source code analysis, and compilation errors as well as testing results are tracked
historically with critical Reports available across teams.

Testing Best Practices: Organizations employing Continuous Builds (scheduled) with
Fully Automated Deployment to a Standardized Test Environment. They utilize a Broad
Variety of Tests both Functional (Automated & Manual) as well as Source Code Analysis
run by a Build Automation System. Limited Capacity Stress Tests are run on Staging
Environment for planning.

Monitoring Best Practices: Organizations integrating Server (Application Monitoring)
and User (Proactive/Synthetic or RUM) data together into a correlated, cross referenced
view. Performance monitoring is automated and routinely tested ad-hoc at scale
(capacity testing).

Innovators:

Agility Gauge: Utilizes Scalable Build Cluster with Load Balancing and Fully Automated
Deployment to Test Environment followed by Fully Automated Deployment to Production
contingent upon Quality Gates. Push Button System Deploy of Coordinated Builds
(collection of Web Services) promoted concurrently. Trending Reports assess SDLC
Performance over time.

Testing Best Practices: Organizations take a rational approach toward the goal to test
100% of their code (testing all user flows and code pathways). This translates to
foregoing some limited number of tests because they are too expensive but ensuring
that all realistic scenarios are thoroughly tested. This would include Functional & Unit
Testing for all important System functions, Distributed Load Tests at Scale (Load
Testing), as well as Performance Testing, increased frequency of Source Code Analysis,
Run Time Monitoring, and Vulnerability Probes. Testing Scripts are reused for
Operational Monitoring.

Monitoring Best Practices: Organizations correlating data sources from, Application
Monitoring, Proactive/Synthetic Monitoring, and RUM (which includes Web User
Behavior, Traffic, & Performance, as well as Video Behavior, Traffic & Performance) into
an Application Analytics engine which typically consists of Automated Detection of
Anomalies, Baseline Metrics, and Visualization across data types.

Bleeding Edge:

Agility Gauge: A Versioned Build Process enables Continuous Deployment scheduled
to Production with Fully Automated Testing & Monitoring. Reports tie SDLC
performance to process changes.

Best Testing Practices: Organizations forego consideration of cost/difficulty and are
strict in their interpretation of testing 100% of expected user Scenarios. Every Line of
code is tested via Automation with the assumption that the cost of creating some Tests
will outweigh their benefit in return for the reduced risk of 100% coverage. This includes
Vulnerability Testing on the Staging Environment.

Monitoring Best Practices: Organizations employ a sophisticated data collection system
leveraging all relevant data. In addition to APM (Application, Proactive/Synthetic, RUM)
data being correlated, core network, security, and business data are correlated into an
Advanced Application Analytics engine which adds Predictive Analysis, and triggers
additional automated tests to reduce the steps associated with manual trouble shooting.

Recommendations/Summary:

Identifying how Agile your organization is may help you map out your next steps and while we
don’t outline specific dependencies, it’s safe to expect that moving up to the next level from
where you are today is generally a realistic objective.

With this in mind, there are a few important trends we’ve observed…

The first is that the historic line between Testing & Performance Monitoring is becoming less
distinct. It’s evolving into a single function differentiated only by whether a check is performed
before or after code release. More commonly organizations are testing complex user scenarios
on their staging platform and reusing the scripts in production for monitoring. Using the same
Scripts Pre and Post Release (Testing & Monitoring) provides consistency between
Development and Operations as well as the increased efficiency of creating once and
leveraging the script multiple times across the lifecycle.

As this linkage between testing and monitoring becomes stronger, it’s evolved into a single
continuous process which occurs more frequently as well as shifted earlier into the development
lifecycle (i.e. test early, test often). Some firms are integrating functional test modules with
regression tests to build scripts and push the concept of reuse earlier into the workflow.

Naturally more frequent testing leads to more automation. So, we’re seeing organizations
investing to automate as many of the testing components as their business model supports:

- Functional
- Integration
- Regression
- Vulnerability
- Performance

While more testing is sure to improve the quality of code, as many organizations have
experienced, component tests/checks don’t always predict how a system will perform under
load. So, we’re also seeing automated Load Tests with realistic user scenarios being performed
at scale, concurrent with Proactive/Synthetic Performance Monitoring and/or Real User
Measurement data being integrated for analysis. In fact, it’s becoming more common for
organizations to collect data from increasingly varied sources and aggregate the data with their
own tools in order to present a comprehensive view upon which to make intelligent decisions, as
well as reduce both Mean Time To Respond and Mean Time To Repair. Sources such as
Proactive/Synthetic, Application, Network, Server, and Application Monitoring, with RUM
Beacons, along with CDN (Content Delivery Network), and HSP (Hosting Service Provider) Log
Files.

Finally, we’re seeing organizations re-evaluate the toolsets that support their SDLC, Testing,
and Monitoring in order to enable more agile processes, reduce test script development time,
and generate more realistic scripts. Tools that are less flexible, and/or poorly integrated require
a significantly greater investment of time and return far less value to the business in terms of
data or risk mitigation.

